Machine Learning

Certificate

Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has given us self-driving cars, practical speech recognition, effective web search, and a vastly improved understanding of the human genome. Machine learning is so pervasive today that it is probably used dozens of times a day without knowing it. Many researchers also think it is the best way to make progress towards human-level AI. This class teaches the most effective machine learning techniques, through implementing them and getting them to work. More importantly, one will learn about not only the theoretical underpinnings of learning, but also gain the practical know-how needed to quickly and powerfully apply these techniques to new problems. Finally, students learn about some of Silicon Valley’s best practices in innovation as it pertains to machine learning and AI.

This course provides a broad introduction to machine learning, datamining, and statistical pattern recognition. Topics include: (i) Supervised learning (parametric/non-parametric algorithms, support vector machines, kernels, neural networks). (ii) Unsupervised learning (clustering, dimensionality reduction, recommender systems, deep learning). (iii) Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI). The course will also draw from numerous case studies and applications, so that students also learn how to apply learning algorithms to building smart robots (perception, control), text understanding (web search, anti-spam), computer vision, medical informatics, audio, database mining, and other areas.

Aditya Jyoti Paul
Aditya Jyoti Paul
Computer Vision and Image Encryption Researcher

My work makes machines smarter, secure and more accessible. I’m passionate about research, teaching and blogging. Outside academia, I love travel, music, reading and meeting new people!